摘要:下面給各位考生帶來(lái)的是:2019年成人高考專升本(高數(shù)一)復(fù)習(xí)內(nèi)容多元函數(shù)微積分學(xué)、微分中值定理及導(dǎo)數(shù)的應(yīng)用復(fù)習(xí),供參考。
下面給各位考生帶來(lái)的是:2019年成人高考專升本(高數(shù)一)復(fù)習(xí)內(nèi)容多元函數(shù)微積分學(xué)、微分中值定理及導(dǎo)數(shù)的應(yīng)用復(fù)習(xí),供參考。
多元函數(shù)微積分學(xué)
(一)多元函數(shù)微分學(xué)
1.知識(shí)范圍
(1)多元函數(shù)
多元函數(shù)的定義 二元函數(shù)的幾何意義 二元函數(shù)極限與連續(xù)的概念
(2)偏導(dǎo)數(shù)與全微分
偏導(dǎo)數(shù) 全微分 二階偏導(dǎo)數(shù)
(3)復(fù)合函數(shù)的偏導(dǎo)數(shù)
(4)隱函數(shù)的偏導(dǎo)數(shù)
(5)二元函數(shù)的無(wú)條件極值與條件極值
2.要求
(1)了解多元函數(shù)的概念、二元函數(shù)的幾何意義。會(huì)求二次函數(shù)的表達(dá)式及定義域。了解二元函數(shù)的極限與連續(xù)概念(對(duì)計(jì)算不作要求)。
(2)理解偏導(dǎo)數(shù)概念,了解偏導(dǎo)數(shù)的幾何意義,了解全微分概念,了解全微分存在的必要條件與充分條件。
(3)掌握二元函數(shù)的一、二階偏導(dǎo)數(shù)計(jì)算方法。
(4)掌握復(fù)合函數(shù)一階偏導(dǎo)數(shù)的求法。
(5)會(huì)求二元函數(shù)的全微分。
(6)掌握由方程 所確定的隱函數(shù) 的一階偏導(dǎo)數(shù)的計(jì)算方法。
(7)會(huì)求二元函數(shù)的無(wú)條件極值。會(huì)用拉格朗日乘數(shù)法求二元函數(shù)的條件極值。
(二)二重積分
1.知識(shí)范圍
(1)二重積分的概念
二重積分的定義二重積分的幾何意義
(2)二重積分的性質(zhì)
(3)二重積分的計(jì)算
(4)二重積分的應(yīng)用
2.要求
(1)理解二重積分的概念及其性質(zhì)。
(2)掌握二重積分在直角坐標(biāo)系及極坐標(biāo)系下的計(jì)算方法。
(3)會(huì)用二重積分解決簡(jiǎn)單的應(yīng)用問題(限于空間封閉曲面所圍成的有界區(qū)域的體積、平面薄板質(zhì)量)。
微分中值定理及導(dǎo)數(shù)的應(yīng)用復(fù)習(xí)
(二)微分中值定理及導(dǎo)數(shù)的應(yīng)用
1.知識(shí)范圍
(1)微分中值定理
羅爾(Rolle)定理 拉格朗日(Lagrange)中值定理
(2)洛必達(dá)(L‘Hospital)法則
(3)函數(shù)增減性的判定法
(4)函數(shù)的極值與極值點(diǎn)最大值與最小值
(5)曲線的凹凸性、拐點(diǎn)
(6)曲線的水平漸近線與鉛直漸近線
2.要求
(1)理解羅爾定理、拉格朗日中值定理及它們的幾何意義。會(huì)用羅爾定理證明方程根的存在性。會(huì)用拉格朗日中值定理證明簡(jiǎn)單的不等式。
(2)熟練掌握用洛必達(dá)法則求各種型未定式的極限的方法。
(3)掌握利用導(dǎo)數(shù)判定函數(shù)的單調(diào)性及求函數(shù)的單調(diào)增、減區(qū)間的方法,會(huì)利用函數(shù)的單調(diào)性證明簡(jiǎn)單的不等式。
(4)理解函數(shù)極值的概念。掌握求函數(shù)的極值、最大值與最小值的方法,會(huì)解簡(jiǎn)單的應(yīng)用問題。
(5)會(huì)判斷曲線的凹凸性,會(huì)求曲線的拐點(diǎn)。
(6)會(huì)求曲線的水平漸近線與鉛直漸近線。
(7)會(huì)作出簡(jiǎn)單函數(shù)的圖形。
共收錄117.93萬(wàn)道題
已有25.02萬(wàn)小伙伴參與做題